
Place Values

Prof. James L. Frankel Harvard University

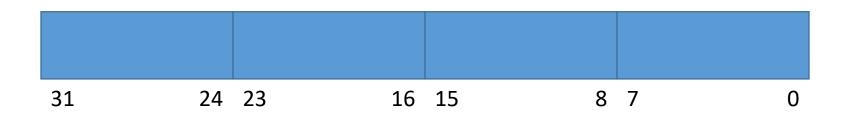
Version of 11:14 PM 1-Dec-2021 Copyright © 2021, 2016 James L. Frankel. All rights reserved.

Value of Bits in Word

• 32-bit Word

- Value of bit 0 is $2^0 = 1$
- Value of bit 1 is $2^1 = 2$
- Value of bit 2 is $2^2 = 4$

...


...

• Value of bit 7 is 2⁷ = 128

• Value of bit 31 is 2³¹ = 2,147,483,648

Numbering Bits in Word

• 32-bit Word

• We number bit positions from least significant bit (LSB) to most significant bit (MSB) beginning with 0

Expressing Integral Values in Binary (Base 2)

0000	0001	0010	0011	0100	0101	0110	0111
31	24	23	16	15	8	7	0

- In binary as 000000100100011010001010101112
 - Difficult to read in binary because there are so many bits
 - Bit is a contraction of *binary digit*
- Groups of eight bits are generally referred to as a byte
- Groups of four bits are generally referred to as a nibble

Expressing Integral Values in Octal (Base 8)

0000	0001	0010	0011	0100	0101	0110	0111
31	24	23	16	15	8	7	0

- In octal as 00110642547₈
 - Use groups of three bits per octal digit starting at the LSB
 - Difficult to read because octal does not groups bits in nibbles or bytes
 - Also, 32 (the word size) is not evenly divisible by 3 (bits per octal digit)

Expressing Integral Values in Hexadecimal (Base 16)

0000	0001	0010	0011	0100	0101	0110	0111
31	24	23	16	15	8	7	0

- Hexadecimal digits are 0 to 9 followed by A to F
- In hexadecimal as 01234567₁₆
 - Use groups of four bits per hexadecimal digit
 - Nicely aligns with nibble and byte boundaries

Value of Hexadecimal Digits

Нех	Binary	Decimal
0	0000	0
9	1001	9
A or a	1010	10
B or b	1011	11
C or c	1100	12
D or d	1101	13
E or e	1110	14
F or f	1111	15

Observation about Hexadecimal Numbers

• Hexadecimal is often the preferred representation for writing large integer values

Expressing Integral Values in Decimal (Base 10)

0000	0001	0010	0011	0100	0101	0110	0111
31	24	23	16	15	8	7	0

- In decimal as 19088743₁₀
 - Doesn't align with any bit boundaries
 - Requires computation to convert to decimal from bits and vice versa
- So, 19088743 = 0x01234567 = 00110642547

Prefixes for Powers of Two

- 1K (Kilo) = 2¹⁰
- 1M (Mega) = 2²⁰
- 1G (Giga) = 2³⁰
- 1T (Tera) = 2⁴⁰
- 1P (Peta) = 2⁵⁰
- 1E (Exa) = 2⁶⁰
- 1Z (Zetta) = 2⁷⁰
- 1Y (Yotta) = 2⁸⁰